Fair Search DELTR

A Java library for disparate exposure in ranking (a learning to rank approach)

License

License

Categories

Categories

Java Languages Search Business Logic Libraries
GroupId

GroupId

com.github.fair-search
ArtifactId

ArtifactId

fairsearchdeltr-java
Last Version

Last Version

1.0.1
Release Date

Release Date

Type

Type

jar
Description

Description

Fair Search DELTR
A Java library for disparate exposure in ranking (a learning to rank approach)
Project URL

Project URL

https://github.com/fair-search/fairsearchdeltr-java
Source Code Management

Source Code Management

https://github.com/fair-search/fairsearchdeltr-java

Download fairsearchdeltr-java

How to add to project

<!-- https://jarcasting.com/artifacts/com.github.fair-search/fairsearchdeltr-java/ -->
<dependency>
    <groupId>com.github.fair-search</groupId>
    <artifactId>fairsearchdeltr-java</artifactId>
    <version>1.0.1</version>
</dependency>
// https://jarcasting.com/artifacts/com.github.fair-search/fairsearchdeltr-java/
implementation 'com.github.fair-search:fairsearchdeltr-java:1.0.1'
// https://jarcasting.com/artifacts/com.github.fair-search/fairsearchdeltr-java/
implementation ("com.github.fair-search:fairsearchdeltr-java:1.0.1")
'com.github.fair-search:fairsearchdeltr-java:jar:1.0.1'
<dependency org="com.github.fair-search" name="fairsearchdeltr-java" rev="1.0.1">
  <artifact name="fairsearchdeltr-java" type="jar" />
</dependency>
@Grapes(
@Grab(group='com.github.fair-search', module='fairsearchdeltr-java', version='1.0.1')
)
libraryDependencies += "com.github.fair-search" % "fairsearchdeltr-java" % "1.0.1"
[com.github.fair-search/fairsearchdeltr-java "1.0.1"]

Dependencies

compile (5)

Group / Artifact Type Version
org.apache.lucene : lucene-expressions jar 7.1.0
org.apache.commons : commons-math3 jar 3.6.1
com.fasterxml.jackson.core : jackson-databind jar 2.8.10
org.nd4j : nd4j-native-platform jar 0.9.1
org.datavec : datavec-api jar 0.9.1

test (4)

Group / Artifact Type Version
junit : junit jar 4.12
com.mashape.unirest : unirest-java jar 1.4.9
org.apache.lucene : lucene-test-framework jar 7.1.0
pl.pragmatists : JUnitParams jar 1.1.1

Project Modules

There are no modules declared in this project.

Fair search DELTR for Java

image image

This is the Java library that implements the DELTR model for fair ranking.

Installation

You can import the library with maven in your pom.xml file:

<dependency>
  <groupId>com.github.fair-search</groupId>
  <artifactId>fairsearch-deltr</artifactId>
  <version>1.0.2</version>
</dependency>

or, if you are using Gradle, in your build.gradle file add this in the dependencies block:

compile "com.github.fair-search:fairsearch-deltr:1.0.2"

And, that's it!

Using it in your code

Add the JAR file to the build path of your project and you are set. The key methods are contained in the following class:

  • com.github.fairsearch.Deltr

The library contains sufficient Java doc for each of the functions.

Sample usage

Train and test a model:

Train a model

You need to train the model before it can rank documents.

package com.github.fairsearch.deltr;

import com.github.fairsearch.deltr.Deltr;
import com.github.fairsearch.deltr.models.DeltrDoc;
import com.github.fairsearch.deltr.models.DeltrDocImpl;
import com.github.fairsearch.deltr.models.DeltrTopDocs;
import com.github.fairsearch.deltr.models.DeltrTopDocsImpl;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

public class HelloWorld {

    public static void main(String[] args) {
       // create some data
        List<DeltrTopDocs> trainSet = new ArrayList<>();

        // create the first "query" to learn
        DeltrTopDocs trainQuery = new DeltrTopDocsImpl(1); // 1 is the question ID

        // let's create each train doc manually (docId, judgement/score)

        // item 1
        DeltrDoc item1 = new DeltrDocImpl(1, 1);
        // add the features to the document (featureName, featureValue, isProtected - since this is a protected feature)
        item1.put("f0", true);
        // add the features to the document (featureName, featureValue)
        item1.put("f1", 0.962650646167003);

        // item 2
        DeltrDoc item2 = new DeltrDocImpl(2, 0.98f);
        item2.put("f0", false);
        item2.put("f1", 0.940172822166108);

        // item 3
        DeltrDoc item3 = new DeltrDocImpl(3, 0.96f);
        item3.put("f0", false);
        item3.put("f1", 0.925288002880488);

        // item 4
        DeltrDoc item4 = new DeltrDocImpl(2, 0.94f);
        item4.put("f0", true);
        item4.put("f1", 0.896143226020877);

        // item 5
        DeltrDoc item5 = new DeltrDocImpl(3, 0.92f);
        item5.put("f0", false);
        item5.put("f1", 0.89180775633204);

        // item 6
        DeltrDoc item6 = new DeltrDocImpl(3, 0.9f);
        item6.put("f0", false);
        item6.put("f1", 0.838704766545679);

        // add the items in the trainQuery
        DeltrDoc[] docsArr = new DeltrDoc[]{item1, item2, item3, item4, item5, item6};
        trainQuery.put(docsArr);

        // the trainQuery to the trainSet
        trainSet.add(trainQuery);

        // setup the parameters for the DELTR object
        double gamma = 1.0; // value of the gamma paramete
        int numberOfIterations = 10000; // number of iterations the training should run
        boolean shouldStandardize = true; // let's apply standardization to the features

        // create the Deltr object
        Deltr deltr = new Deltr(gamma, numberOfIterations, shouldStandardize);

        // train the model
        deltr.train(trainSet);
        // deltr.getOmega() -> [0.025225676596164703, 0.0798153206706047]
    }
}

Use the model to rank

Now, you can use the obtained model to rank some data.

// let's create a sample prediction set
DeltrTopDocs preidictionSet = new DeltrTopDocsImpl(2); // 2 is the question ID

// let's create each prediction doc manually (docId, judgement/score)

// item 7
DeltrDoc item7 = new DeltrDocImpl(7, 0.9645f); // the current score is not really important
item7.put("f0", false);
item7.put("f1", 0.9645);

// item 8
DeltrDoc item8 = new DeltrDocImpl(8, 0.9524f);
item8.put("f0", false);
item8.put("f1", 0.9524);

// item 9
DeltrDoc item9 = new DeltrDocImpl(9, 0.9285f);
item9.put("f0", false);
item9.put("f1", 0.9285);

// item 10
DeltrDoc item10 = new DeltrDocImpl(10, 0.8961f);
item10.put("f0", false);
item10.put("f1", 0.8961);

// item 11
DeltrDoc item11 = new DeltrDocImpl(11, 0.8911f);
item11.put("f0", true);
item11.put("f1", 0.8911);

// item 12
DeltrDoc item12 = new DeltrDocImpl(12, 0.8312f);
item12.put("f0", true);
item12.put("f1", 0.8312);

//add the items in the set
DeltrDoc[] predArr = new DeltrDoc[]{item7, item8, item9, item10, item11, item12};
preidictionSet.put(predArr);

DeltrTopDocs reranked = deltr.rank(preidictionSet);
// reranked ->
// id:11, judgement:0,072242, isProtected:true
// id:12, judgement:0,061806, isProtected:true
// id:7, judgement:0,059804, isProtected:false
// id:8, judgement:0,057696, isProtected:false
// id:9, judgement:0,053532, isProtected:false
// id:10, judgement:0,047887, isProtected:false

The library contains sufficient code documentation for each of the functions.

Checking the model a bit deeper

You can check how the training of the model progressed using a special property called log (getLog()).

for(TrainStep step : deltr.getLog()) {
    System.out.println(step);
}
//timestamp:1556475668410, lossStandard:5,999854, lossExposure:0,000000
//timestamp:1556475668492, lossStandard:5,999854, lossExposure:0,000000
//timestamp:1556475668548, lossStandard:5,999852, lossExposure:0,000000
// .
// .
// .

The log returns a list of objects from the com.github.fairsearch.deltr.models.TrainStep class. The class is a representation of the parameters in each step of the training. The parameters can be acquired with:

  • getTimestamp()
  • getOmega()
  • getLoss()
  • getLossStandard()
  • getLossExposure()

Development

  1. Clone this repository git clone https://github.com/fair-search/fairsearchdeltr-java
  2. Change directory to the directory where you cloned the repository cd WHERE_ITS_DOWNLOADED/fairsearchdeltr-java
  3. Use any IDE to work with the code

If you want to make your own builds you can do that with the Gradle wrapper:

  • To make a JAR without the external dependencies:
./gradlew clean jar
  • To make a JAR with all external dependencies included:
./gradlew clean farJar

The output will go under build/libs.

Testing

Just run:

./gradlew clean check

Note: Due to the high volume of the datasets, the tests take a bit longer time to execute. It takes approx. 30 mins on a laptop with an Intel i7-5500U CPU and 8GB memory. Also, because there is a randomness factor involved in the tests, it can happen that (very rarely) they fail sometimes.

Credits

The DELTR algorithm is described in this paper:

This library was developed by Ivan Kitanovski based on the paper. See the license file for more information.

For any questions contact Meike Zehlike.

See also

You can also see the DELTR for ElasticSearch and DELTR Python library.

com.github.fair-search

Fair Search

A set of tools for ranking post-processing (FA*IR) and in-processing (DELTR) with fairness constraints.

Versions

Version
1.0.1
1.0.0
0.0.1