react-intersection-observer
React implementation of the Intersection Observer API to tell you when an element enters or leaves the viewport. Contains both a Hooks, render props and plain children implementation.
Storybook Demo: https://react-intersection-observer.vercel.app
Features
-
🎣 Hooks or Component API - WithuseInView
it's easier than ever to monitor elements -
⚡️ Optimized performance - Reuses Intersection Observer instances where possible -
⚙️ Matches native API - Intuitive to use -
🧪 Ready to test - Mocks the Intersection Observer for easy testing with Jest -
🌳 Tree-shakeable - Only include the parts you use -
💥 Tiny bundle ~1.7 kB gzipped
Installation
Install using Yarn:
yarn add react-intersection-observer
or NPM:
npm install react-intersection-observer --save
Usage
Hooks
🎣
useInView
// Use object destructing, so you don't need to remember the exact order
const { ref, inView, entry } = useInView(options);
// Or array destructing, making it easy to customize the field names
const [ref, inView, entry] = useInView(options);
React Hooks make it easy to monitor the inView
state of your components. Call the useInView
hook with the (optional) options you need. It will return an array containing a ref
, the inView
status and the current entry
. Assign the ref
to the DOM element you want to monitor, and the hook will report the status.
import React from 'react';
import { useInView } from 'react-intersection-observer';
const Component = () => {
const { ref, inView, entry } = useInView({
/* Optional options */
threshold: 0,
});
return (
<div ref={ref}>
<h2>{`Header inside viewport ${inView}.`}</h2>
</div>
);
};
Render props
To use the <InView>
component, you pass it a function. It will be called whenever the state changes, with the new value of inView
. In addition to the inView
prop, children also receive a ref
that should be set on the containing DOM element. This is the element that the IntersectionObserver will monitor.
If you need it, you can also access the IntersectionObserverEntry
on entry
, giving you access to all the details about the current intersection state.
import { InView } from 'react-intersection-observer';
const Component = () => (
<InView>
{({ inView, ref, entry }) => (
<div ref={ref}>
<h2>{`Header inside viewport ${inView}.`}</h2>
</div>
)}
</InView>
);
export default Component;
Plain children
You can pass any element to the <InView />
, and it will handle creating the wrapping DOM element. Add a handler to the onChange
method, and control the state in your own component. Any extra props you add to <InView>
will be passed to the HTML element, allowing you set the className
, style
, etc.
import { InView } from 'react-intersection-observer';
const Component = () => (
<InView as="div" onChange={(inView, entry) => console.log('Inview:', inView)}>
<h2>Plain children are always rendered. Use onChange to monitor state.</h2>
</InView>
);
export default Component;
⚠️ When rendering a plain child, make sure you keep your HTML output semantic. Change theas
to match the context, and add aclassName
to style the<InView />
. The component does not support Ref Forwarding, so if you need aref
to the HTML element, use the Render Props version instead.
API
Options
Provide these as props on the <InView />
component or as the options argument for the hooks.
Name | Type | Default | Required | Description |
---|---|---|---|---|
root | Element |
document | false | The IntersectionObserver interface's read-only root property identifies the Element or Document whose bounds are treated as the bounding box of the viewport for the element which is the observer's target. If the root is null , then the bounds of the actual document viewport are used. |
rootMargin | string |
'0px' | false | Margin around the root. Can have values similar to the CSS margin property, e.g. "10px 20px 30px 40px" (top, right, bottom, left). |
threshold | number | number[] |
0 | false | Number between 0 and 1 indicating the percentage that should be visible before triggering. Can also be an array of numbers, to create multiple trigger points. |
trackVisibility |
boolean |
false | false | A boolean indicating whether this IntersectionObserver will track changes in a target’s visibility. |
delay |
number |
undefined | false | A number indicating the minimum delay in milliseconds between notifications from this observer for a given target. This must be set to at least 100 if trackVisibility is true . |
skip | boolean |
false | false | Skip creating the IntersectionObserver. You can use this to enable and disable the observer as needed. If skip is set while inView , the current state will still be kept. |
triggerOnce | boolean |
false | false | Only trigger the observer once. |
initialInView | boolean |
false | false | Set the initial value of the inView boolean. This can be used if you expect the element to be in the viewport to start with, and you want to trigger something when it leaves. |
InView Props
The <InView />
component also accepts the following props:
Name | Type | Default | Required | Description |
---|---|---|---|---|
as | string |
'div' | false | Render the wrapping element as this element. Defaults to div . |
children | ({ref, inView, entry}) => React.ReactNode , ReactNode |
true | Children expects a function that receives an object containing the inView boolean and a ref that should be assigned to the element root. Alternatively pass a plain child, to have the <InView /> deal with the wrapping element. You will also get the IntersectionObserverEntry as `entry, giving you more details. |
|
onChange | (inView, entry) => void |
false | Call this function whenever the in view state changes. It will receive the inView boolean, alongside the current IntersectionObserverEntry . |
IntersectionObserver v2
🧪
The new v2 implementation of IntersectionObserver extends the original API, so you can track if the element is covered by another element or has filters applied to it. Useful for blocking clickjacking attempts or tracking ad exposure.
To use it, you'll need to add the new trackVisibility
and delay
options. When you get the entry
back, you can then monitor if isVisible
is true
.
const TrackVisible = () => {
const { ref, entry } = useInView({ trackVisibility: true, delay: 100 });
return <div ref={ref}>{entry?.isVisible}</div>;
};
This is still a very new addition, so check caniuse for current browser support. If trackVisibility
has been set, and the current browser doesn't support it, a fallback has been added to always report isVisible
as true
.
It's not added to the TypeScript lib.d.ts
file yet, so you will also have to extend the IntersectionObserverEntry
with the isVisible
boolean.
Recipes
The IntersectionObserver
itself is just a simple but powerful tool. Here's a few ideas for how you can use it.
- Lazy image load
- Trigger animations
- Track impressions (Google Analytics, Tag Manager, etc)
FAQ
How can I assign multiple refs to a component?
You can wrap multiple ref
assignments in a single useCallback
:
import React, { useRef } from 'react';
import { useInView } from 'react-intersection-observer';
function Component(props) {
const ref = useRef();
const [inViewRef, inView] = useInView();
// Use `useCallback` so we don't recreate the function on each render - Could result in infinite loop
const setRefs = useCallback(
(node) => {
// Ref's from useRef needs to have the node assigned to `current`
ref.current = node;
// Callback refs, like the one from `useInView`, is a function that takes the node as an argument
inViewRef(node);
},
[inViewRef],
);
return <div ref={setRefs}>Shared ref is visible: {inView}</div>;
}
rootMargin
isn't working as expected
When using rootMargin
, the margin gets added to the current root
- If your application is running inside a <iframe>
, or you have defined a custom root
this will not be the current viewport.
You can read more about this on these links:
- Intersection Observer API
- w3c/IntersectionObserver: IntersectionObserver rootMargin ignored within iframe
- w3c/IntersectionObserver: Cannot track intersection with an iframe's viewport
- w3c/Support iframe viewport tracking
Testing
In order to write meaningful tests, the IntersectionObserver
needs to be mocked. If you are writing your tests in Jest, you can use the included test-utils.js
. It mocks the IntersectionObserver
, and includes a few methods to assist with faking the inView
state. When setting the isIntersecting
value you can pass either a boolean
value or a threshold between 0
and 1
.
test-utils.js
Import the methods from react-intersection-observer/test-utils
.
mockAllIsIntersecting(isIntersecting:boolean | number)
Set isIntersecting
on all current IntersectionObserver instances.
mockIsIntersecting(element:Element, isIntersecting:boolean | number)
Set isIntersecting
for the IntersectionObserver of a specific element.
intersectionMockInstance(element:Element): IntersectionObserver
Call the intersectionMockInstance
method with an element, to get the (mocked) IntersectionObserver
instance. You can use this to spy on the observe
and unobserve
methods.
Test Example
import React from 'react';
import { screen, render } from 'react-testing-library';
import { useInView } from 'react-intersection-observer';
import { mockAllIsIntersecting } from 'react-intersection-observer/test-utils';
const HookComponent = ({ options }) => {
const [ref, inView] = useInView(options);
return <div ref={ref}>{inView.toString()}</div>;
};
test('should create a hook inView', () => {
render(<HookComponent />);
// This causes all (existing) IntersectionObservers to be set as intersecting
mockAllIsIntersecting(true);
screen.getByText('true');
});
test('should create a hook inView with threshold', () => {
render(<HookComponent options={{ threshold: 0.3 }} />);
mockAllIsIntersecting(0.1);
screen.getByText('false');
// Once the threshold has been passed, it will trigger inView.
mockAllIsIntersecting(0.3);
screen.getByText('true');
});
Intersection Observer
Intersection Observer is the API used to determine if an element is inside the viewport or not. Browser support is really good - With Safari adding support in 12.1, all major browsers now support Intersection Observers natively. Add the polyfill, so it doesn't break on older versions of iOS and IE11.
Polyfill
You can import the polyfill directly or use a service like polyfill.io to add it when needed.
yarn add intersection-observer
Then import it in your app:
import 'intersection-observer';
If you are using Webpack (or similar) you could use dynamic imports, to load the Polyfill only if needed. A basic implementation could look something like this:
/**
* Do feature detection, to figure out which polyfills needs to be imported.
**/
async function loadPolyfills() {
if (typeof window.IntersectionObserver === 'undefined') {
await import('intersection-observer');
}
}
Low level API
You can access the observe
method, that react-intersection-observer
uses internally to create and destroy IntersectionObserver instances. This allows you to handle more advanced use cases, where you need full control over when and how observers are created.
import { observe } from 'react-intersection-observer';
const destroy = observe(element, callback, options);
Name | Type | Required | Description |
---|---|---|---|
element | Element |
true | DOM element to observe |
callback | ObserverInstanceCallback |
true | The callback function that IntersectionObserver will call |
options | IntersectionObserverInit |
false | The options for the IntersectionObserver |
The observe
method returns an unobserve
function, that you must call in order to destroy the observer again.
⚠️ You most likely won't need this, but it can be useful if you need to handle IntersectionObservers outside React, or need full control over how instances are created.